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ABSTRACT

An unknown number, N , of errors exist in a certain product, for ex-
ample, defects in a production lot, errors in a manuscript, or bugs in a
computer program. I inspectors with possibly different competencies are
to be put to work to find the errors. How should the inspection be organ-
ized, and what is a good estimate of the undetected errors (or of N)?

This problem is similar to the capture-recapture sampling problem of
population biology, assuming a closed population and a parallel search ef-
fort, for which many classical results are available., For example, in the
case 1 2, the Petersen method estimates N as:

n(l)n(2)
n12.. .

where n(i) is the total number of errors found by inspector i , (i 1,2,)

and n12  is the number of defects found by both inspectors. A correspond-

ing maximum-likelihood estimate of N in the general case is due to Chapman
and Darroch, and must be solved recursively (see Seber (1982) for a summary
of animal census methods).

A from an elementary analysis of the 1 = 2 case by-Xaaell and
George (1972)Y and some sequential sampling plans by Freeman'(1973) the-
only Bayesian approach to this problem appears to be by Castledine '(1981),
who obtains rather complicated results appropriate to the population biology
model. ..

-ht-4ur paper, we develops,,the model in a manner more related to error
detection problems.by first assuming that N is Poisson with parameter A
and the detection 3f defects follows a multinomial law, with independent
detection probabiliieso P (i - 1,2, ..., I) . The maximum likelihood

estimator of A has\the same form as the Chapman-Darroch estimator, and a
similar result obtain for Q - nI (1 - p , the probability that a given

error is overlooked durng parallel search.

Next, we analyze the problem in which X and the p. are random

quantities, by assuming that they are Gamma- and Beta-distributed, respec-

tively. The resulting prediction of the number of unfound errors (the mean
of the predictive distribution) can then be expressed as a weighted sum of
products of linear "credibility" predictions for X and the p, . Sur-

prisingly, the predictive density can be calculated exactly through a re-
cursive relationship which shows that the density is negative binomial in

• the tails. In the limit,as the prior variances of A and the p, in-

crease without bound, the predictive mode approaches the Chapman-Darroch
estimator; if we have strong prior information, the mode is given by a
generalized Chapman-Darroch form involving credibility formulae. %

*.-. .-,.
....... ... .. * **-*%*......~. * *.**.*~*..*.** . .- * ... . . . ... .... . . . . . . .. ~ .. .x



BAYESIAN ESTIMATION OF UNDETECTED ERRORS

by

William S. Jewell

1. INTRODUCTION

A number of estimation problems in reliability can be described as fol-

lows: a certain product has an unknown number, N , of defects. A group of

I inspectors each allocates a given amount of independent effort to finding

and removing the defects. After finding, say, nT total defects, what is

the estimated number, no - N - nT , of undetected defects still left in the

product?

For example, in manufacturing quality control, the product may be a cer-

tain production lot for which the inspectors may use visual or machine-aided

* techniques to inspect a portion or all of the items. Estimation of the num-

ber of undiscovered defects in the sample scrutinized is the first step in

setting quality assurance levels for the entire lot.

In software reliability, the defects correspond to program errors or

bugs that can be detected and removed by programmers using some combination

of visual scanning of program code and of experimental running of the pro-

gram on typical input. The estimation of undetected errors remaining in the

program not only helps certify the application-readiness of the software,

but also provides an indication of the effort that will be needed for cus-

tomer support and for the upgrading of future program releases. A similar

interpretation arises in the proofreading of manuscripts for misprints.

Superficially, this model is similar to the problem of estimating the

ultimate failure rate of a product during the reliability growth (learning

*- curve) phase of product testing and development (see, e.g., Jewell (1982)).

N..

. . . . . . .*. *..*
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However, in that application, an unspecified external process of design im-

provement reduces the stochastic rate of recurrence of product "failures"

according to some given law, whose parameters are to be estimated. In this

model, on the other hand, an inspector is assumed to actually remove (or at

least to identify) one of a finite number of defects or errors, so that, at

the end of inspection, there remain only a smaller number of unfound errors.

Further, as we shall see below, there is an advantage to having the inspec-

tors work in parallel on the same product, rather than in series, as this

helps make more precise any uncertainty in the inspection efficiencies of

the different examiners, and thus improves the estimate of undetected errors.

After specifying the basic model, we find first a simple point estima-

tor for N that was originally developed in the field of population biology

- (by Petersen, Chapman, Darroch, and others) for estimating the size of a

closed animal population through capture-recapture sampling. We then make

the additional assumption that N is Poisson with parameter X , and show

that the MLE for X has the same form as the classical estimator of N

We then analyze the problem from a Bayesian point of view by assuming

that X and the detection probabilities for each inspector are random quan-

tities with Gamma- and Beta-prior densities, respectively. After computing

the rather complex posterior densities of the parameters, we then find a

simpler expression for the predictive density of no  in recursive form,

showing that this density is Negative Binomial in the tails. Moments of

this predictive density can only be expressed as a ratio of complex weighted

sums of products of linear "credibility" predictors for X and the detec-

tion probabilities; however, the posterior mode of no  can be rearranged

into the form of a generalized Petersen-Chapman-Darroch estimator using cred-

ibility formulae.

N• 
.N S 5
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The paper concludes with examples of numerical calculations of the

predictive density and remarks on model extensions.

I would like to express my appreciation to Sheldon Ross, who introduced

me to this problem area through the paper of Polya (1976), and to Dennis

Lindley, who pointed out the connection with capture-recapture census methods.

--.

. . . . . . . . . . . . . . . . . . . .. ...- ,
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2. BASIC MODEL; SERIES AND PARALLEL SEARCH STRATEGIES

Suppose that the error inspection process is such that:

(a) Each error present has the same probability of being detected

by a given inspector;

(b) The probability that inspector i will find any given error

is Pi , (i 1,2, ... , I) , independent of previous errors

found by i or by any other inspector.

The simplest possible strategy for organizing a search by I inspectors is a

serial one, in which: inspector #1 examines the raw product (which has an un-

known number, N , of errors), and finds and removes n1  errors; inspector

#2 then examines the product (which now has N- n errors), finding and re-

th
moving n2  errors;. until the I inspector finds and removes n of the2I

N - (nI + n2 + ... + n I1 ) errors remaining. It follows from the assumptions

above that each of the unknown ni is conditionally Binomially distributedA i'

with parameters (pi ' N - (n 1 + n2 + ... + ni_)) , so that the joint condi-

tional density of the I pieces of data, i.e., of (nln 2 , ..., I N ; 2)

where p - (plP 2, ... , p1) , is easily found. The total number of detected

errors in serial search is nT  n, + n2 + ... + n1 , so the number of un-
2 -

detected errors is n - N - nT . More importantly, since each error, if

present, is missed by i with probability qi 1- pi (i 1,2, ... , I)

the total overlook probability (probability of being undetected by any in-

spector) for every error is Q H qi ' and thus the conditional density of

undetected errors, (n I N ; p) , is Binomial(Q,N)

A parallel search strategy is more complicated, since here we assume, "

either that the inspectors all work independently on identical copies of the

.5... . . . ..• ..... . . .*- . . -o . .*. . * . , • ° , . . . . . , . .. .. . . . .°°.

-. % • - ° • , , ° , , • ° . , o •, • • . • o . , . °%

" ' , . •*.".• -. ", "• ". ". °. ". %. ' % , "% , .' , . - , , , " • .,.4 ' ° ' ° * .. ' . ' . ,,, . ° •. .''. i' •. . .> ', .-'..'" .- -: '. '. .. - - -. '. ' ' .." ." ".. -- v " ' .,'. '..'v.,''-. . .''.''..''- ', v,.'?-. "
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product, or that they work in some sequence on a single product, (secretly)

identifying, but not removing, the defects which they find. With this strat-

egy, there will usually be duplication in the defects found by different in-

spectors, and the lists of defects reported by each will have to be recon-

ciled, classifying and counting the errors in the following mutually exclu-

sive and collectively exhaustive categories:

ni -the number of defects found only by inspector i

nij -the number of defects found jointly only by i and j (i < j) ;

nijk the number of defects found jointly only by i , J, and k (i <j <k)

n 2̂3  . - the number of defects found jointly by all inspectors.
123-1I

Thus, there will be 2 1 separate pieces of observed data:

0fi{(n i) ;(ni ) ;(ni  ) ; . ;n 12 . .
} • .--'

lijiJK''1 i...I-'.
° ..

Inspector i finds, in total:

(2.1) n(i) - ni + n. + " n . n
i j ij 2-j<k" i [i

defects, and the total number of distinct defects found by all inspectors is: S

(2.2) nT  + "" + n
ijk +.' 123.. I

i ici ~i<j ck 23..-.n(1) -1 .Znlj -2 n. i jk - '-(I- 1)n123... I ..,.
i i<3 i<j <k •..'

The joint conditional density of V and no  N nTis derived in the

next section. Note that, in spite of the additional complexity of parallel

o° .. .

°°IL
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search, it again follows from the assumptions that the total overlook prob-

ability for each error is Q , and hence (n0  N ; 2) is again Binomial(Q,N)

Thus, for fixed N and p , the density of undetected errors is independent

of the search strategy

Why, then, would one be interested in parallel search? The answer lies

in the fact that, by permitting duplicate errors to be found, we gain addi-

tional information about the detection probabilities (pi) so that if they

are unknown quantities at the beginning of inspection, the increased data

set associated with parallel search will provide increased precision in the

posterior densities of both R and n 0 Henceforth, we shall assume that

a parallel search for errors has been made.

Fi

- *

* Of course, if defect removal occupies a substantial portion of the inspection
effort, then the two search strategies are no longer comparable in the sense

-6 described above.

..-..

p-,

Of.......................................rton f te Ispetio r
effor,...n......... ar.... ateg.s.. e.. o.. nge..omarabe..nthe.ense"...

. . . . . .. . . . . . . v.. . . . . . . . . . . . . . . . . .
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3. THE PETERSEN-CHAPMAN-DARROCH ESTIMATORS

We begin by deriving some classical point estimators for N using !.

heuristic arguments. For I = 2 , we can argue as in Polya (1976) that, if

p1  were known, N - n(l)/pl is a reasonable point estimate of the unknown

total number of errors. On the other hand, there is also the estimator

p1  n1 2/n(2) for the first detection probability, since, of the n(2)

total errors found by the second inspector, n1 2  were also found by the

first. Combining these two estimates, we have:

(3.1) = n(l)n(2) nn 2  n(i)
(3.1) nT + - ; Pi =  (1 1,2).

n12 N

Note that this argument is symmetric with respect to the two inspectors, and

that both singly-found and jointly-found defects are important.

With I > 2 , a slightly different argument is needed. Let the unknown

N be decomposed into found and unfound defects, and replace the latter by

its mean value with fixed :

N nT + no nT + QN

However, the unknown miss probabilities, qi can be estimated for fixed N

by 1 - (n(i)/N) , so that, combining the two estimates:

(3.2) N nT + N 1 -;""'

I)=i = - nT

-- N N

.. .. . .2 . ..... .. ... .. .. ... .. .. ... .. ..
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For I = 2 , these formulae reduce to (3.1), while for I - 3 , they require

the solution of a quadratic equation, etc A variety of approximating and

iterative procedures are available for (3.2); see Seber (1982). A good ini-

tial approximation in the general case is:

I n(i)n(j)

(3.4) =<j ; nij
t<J

which is reminiscent of (3.1). It is easy to show that, if all n(i) are

equal to each other and to nT , then N = nT ; otherwise, (3.2) has a unique

finite root > nT.

In spite of the appearance of n in (3.1) and (3.4), it should be
ij

clear from (3.2) that only the I + 1 pieces of information in the reduced

data set, V* = {(n(i));nT} , are needed to estimate

(3.1) has a long history in the statistical literature; it was appar- . .

ently first used by LaPlace in 1783 to estimate the population of France.

In population biology, it arises in the capture-recapture sampling of a

fixed, but unknown animal population, in which n(l) animals are captured

and marked in some distinctive fashion, and then released to mix wih the

general population. At some later time, when ideal mixing is thought to

have occurred, a second sample of n(2) animals are recaptured, of which

n are observed to be already marked. N then estimates the total animal

census, and is generally called the (C.G.J.) Petersen method, after the

Danish fishery biologist who used it to study plaice populations in 1889;

. however, it is also attributed to a Norwegian, K. Dahl, in 1917, and by

• iornithologists, to an American, F.C. Lincoln, who calculated waterfowl

.l abundance in 1930. Further details may be found in Seber (1982).

.. .. .. .. .. .. . .. .. .. .. .. .

.. . . .. .. . . . . .. . . . . .. .. . . . ... . 2-2.
.. %........ .~............ . .......... .'o'...-.-.-.. ... .. ' . . ." ..... .. .... %,
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The case I > 2 corresponds to a multiple capture-recapture sampling

of a closed population, in which successive catches are distinctively

" (re)marked and then released, in what is called a Schnabel census. The es-

.- timator (3.2) was first obtained by Chapman (1952), thus showing that the

reduced data set D* is sufficient for N and p ; in animal census ter-

minology, this means that the complete capture history, e.g., distinctive

remarking, is not needed to estimate the size of a closed population.

Darroch (1958) then clarified the derivation of (3.2) and analyzed its prop-

erties. Since that time, there has been an explosion of generalizations of

this approach in the biometric literature, as well as adaptations to epide-

miology and other fields; again, Seber (1982) provides the most convenient

summary. By far, the literature uses classical estimation techniques; the

Bayesian literature is described below in Section 9.

..-1,

~t -* ~**- -4S,*
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4. NUMERICAL BEHAVIOR OF THE CLASSICAL ESTIMATOR

To obtain some idea of the empirical properties of N (and hence ofA

in (5.5)), simulations of the error detection process were run with a true

value of N = 100 , for I 2,4, and 8 inspect. .3, and with a range of

common detection probabilities, pi i  p - .05,(.05) .30,(.10) .90 . 100

samples provided sufficient stability for large p , but 200 samples were

needed for smaller values of p , as often the estimator did not exist for

small p because no overlap in detection occurred.

The results are summarized in Figures 1,2, and 3. For very small values

of p , N is badly underbiased, then swings briefly to overbiased values be-

fore settling down to the true value as p approaches unity. This effect

occurs at lower values of p , and is reduced in magnitude, by increasing

I . However, looking at the quantiles, we see that the distribution of pos-

sible values of N is very unstable, and probably unacceptable, for low

values of p

%1

j i~

........................... ,.c....... W

.. . . . . * * .. * * * * * * * * . . . . .



12

150

95%

0.9 p

505%
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FIGURE 1. Empirical Behavior of Classical Estimator N versus Common
Detection Probability p ,with 1 2 Inspectors. N -100

true A.
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FIGURE 2. Empirical Behavior of Classical Estimator N versus Common
Detection Probability p ,with I1 4 Inspectors. N 100. .*

true
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FIGURE 3. Empirical Behavior of Classical Estimator N versus Common
Detection Probability p ,with 1 8 Inspectors. Ntru 100
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5. POISSON ERRORS

Using the assumptions of the last section, it follows that the joint

density of n and D under parallel search is the multinomial distribu-
0

tion:

(5.1) p(noV I N ,p) o )Qo ii Q)

where w"i p i /qi is the odds-ratio for inspector i ,and, of course,

n N- nT , with nT given by (2.2). As might have been expected, (5.1)

then simplifies to:

NN I (i) -
(5.2) p(no, D N , £) - QN IT ...

i-i

In the reliability applications of interest, it seems natural to assume

that the total number of defects or errors would be generated by a Poisson

process, with parameter X ; in the next section, additional modelling flex-

ibility will be added by permitting both X and to be random quantities.

With the Poisson assumption, and eliminating N in favor of n , the joint

density can be rearranged into:

An n(i) nT-n(i)

n ' X 29 Xi11'P q
o ~i=l ....

It follows that the conditional density of undetected errors is Poisson(XQ):

n e
(5.3) p(n0 X p) = (nQ) °eAQ

* . %'. % .. 5. * .. o. *
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(which is expected from first principles), and the data likelihood is:

n lQ)I n(i) n T-n(i) !
(5.4) P(D* X X ,P ne-IIQ l Pi qi :i

In other words, the reduced data set, V* = {(n(i));n T I is sufficient for

both X and p

The maximum-likelihood estimates of the parameters are now:

(5.5) nT + X I

^ n(i) 1 nT(5.6) P i)-- (i = 1,2, ... , I) ; (Q - 1i--r .q
(5.6) pi( ,, 1

which can be compared with (3.2)(3.3). In other words, the MLE of X is

* . exactly the Petersen-Chapman-Darroch estimator for N

'.. ::.:.:
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6. A BAYESIAN MODEL

The model just developed is unsatisfactory in most applications because

(5.3) depends upon X and p being known exactly, thus giving, for example,

E{n o I A , R} -f XQ . Usually, these parameters will not be known precisely,
0

and so we will henceforth assume that these are random quantities, with given

prior distributions. In this way, the search for errors will also provide us

with updated estimates of the rate of error occurrence for this particular

product and for the current inspector performance parameters.

Because of the complexity of our final results, even with simple priors,

we begin first with cases in which either A or p are known, a priori.

This permits us to review known results on appropriate natural conjugate

priors, and to suggest methods for estimating hyperparameters. For simpli-

city, hyperparameters are omitted as explicit arguments, except in priors.

One special notation is convenient in the sequel. If the predictive

mean of some random variable y is a linear function of a "natural estimator",

y - y(D ) formed from the data, D , then we refer to the formula for the
y y

predictive mean as a "credibility estimator", because it generally has the

form:

(6.1a) E{y I y} D (1- Z)E{y} +Zg(y) dZf f-(y;n,v)
y y y

where

n .(6.1b) Z Z(n,v) n

is the "credibility factor" which mixes the prior mean, E{y} , and the nat-

ural estimator, y(Dy) . n is the "equivalent number of samples" in the
y

data, and v is the "credibility time constant". This terminology is from

.. ... . . .. . . .. . .. . ... ...."-- .i-----,n - --- - . _ u _ .L .. ... .. . .... . . . _ _ _ . . . . . ........ ....
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the field of actuarial science, but formulae of this type occur repeatedly

in Bayesian prediction or in least-squared approximations to predictive means. 0

A complete bibliography of credibility theory through 1981 is promised as a -.'.

forthcoming special issue of Insurance Abstracts and Reviews.

6.1 Random Error Occurrence Rate, Fixed Detection Probabilities

6.1.1 A Simplified Experiment

Consider first a simplified experiment in which an integer-valued random

variable, n , is Poisson-distributed, with the mean rate, X , now considered

to be a random quantity. A convenient prior on A is the Gamna(a,b) den-

sity:

a a-l -bXba X eb i

(6.2) p(A I ab) r(a) (A > 0).

The hyperparameters (a,b) can be selected by estimating the first two prior

moments of the error occurrence rate, since E{M) - a/b , and V{) E 1/b

(Note that randomizing on A is tantamount to saying that, a priori, n is

Negative Binomial(a , (b + 1)- ) .)

(6.2) is advantageous because the Gamma family is "closed under sampling",

that is, if the outcome of a single experiment is n - nT , then the posterior-

to-data density, p(X I n.) is just Gamma(a + nT , b + 1) , i.e., has the .

same form as (6.2), but with updated parameters. This simplicity also extends

to the posterior-to-data predictive mean of A , which is of credibility form:

E{A nT1 -f(nT;l,b)

.- ..

. . . . . . . . . . . -.. . °
°-°°-..- .-.-. °.°.-...•° o .......... .-.- .- ,--°.° .-. .... °.... ....- . . .,"% .
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If a and b are varied, keeping the prior mean, E{A} = a/b constant, we

see that the time constant, v - b , shifts the credibility weight, Z =

(1 + b) , to be attached to the outcome of the experiment as a "credible"

measure of A . (In this sense, the credibility notation hides the fact that

E{A j nT} depends on both a and b.)

6.1.2 Undetected Error Likelihood and Posterior Parameter Density

For our undetected error model, we use the more complex likelihood in

(5.4), keeping y fixed, which becomes:

(6.3) p(nT, , 2) A e(lQ)

p.-..",

This modifies slightly the results of the last section, and we find that the

posterior-to-data density of A is Gamma(a + nT , b + 1 - Q) . The mean

posterior value of the parameter is:

,4) { * - E6 I n Q) f (nT (1 Q) ,b)

so that, relative to our simplified experiment, the time constant is unchanged,

but the equivalent number of samples is reduced. Since Z depends upon the

ratio (n/v) , somewhat less credibility is attached to the observation in this

model.

6.1.3 Prediction of Undetected Errors

However, the posterior density of A is only an intermediate step to

the result of interest, namely, determining the predictive density of no

Since p(n j A , X ) is Poisson(XQ) (5.3), the marginal (prior) density

of n , found by mixing with (6.2), is:
%.
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nr (a + n b ) o
(6.5) P(nr(a)n b + Q (no 0,1,2, ... )

that is, Negative Binomial(a , Q/(b + Q)) . Thus, before detecting errors,

our opinion about the errors that will be undetected after the experiment is

that E{n Q) - aQ/b , and V{n Q) - (aQ/b) (1 + (Q/b))

From the updating found in Section 6.1.2, it follows that, after the

detection experiment is over, we will predict that the density of n ,

p(n 0*, P* ) p(n nT , Q) is Negative Binomial with updated parameters

(a + nT Q/(b + 1)) For future reference, this predictive density satis-

fies the recursion:

)(n° + 1 nT ,Q) = P(no  nT ,Q)(-__Q_ a +  T + no '"""

p0n l b + 1 n

Posterior-to-data, the predicted mean number of defects not yet found is then:

(6.6) EGi~ 1* p} En nT ,Q}"f ((1fT);(l ) b)
00n . .Q

0

As in (6.4), the hyperparameters enter as the ratio (a/b) in determining

E{n I , and b becomes the credibility time constant in a credibility for-
0

mula with 1 - Q equivalent samples. Thus, if a and b , the parameters of

the prior, are large (resp., close to 0), then the natural estimator, n =

QnT/(l - Q) , is weakly (resp., strongly) weighted in the prediction, relative

to the prior opinion, E{n o } . This is exactly what we would expect in com-
0

paring the results obtained with strong or weak prior opinion. Finally, note

that when Z is fixed, only Q is in fact used, and only nT  from the data .

is sufficient for and no

0.- .'..-.*
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t6.2 Random Detection Probabilities, Fixed Error Occurrence Rate

6.2.1 A Simplified Experiment

In the opposite situation, where X is known, but the (pi are joint-

ly random, it is instructive to first consider a simple one-dimensional ex-

periment in which an integer-valued random variable, n = 0,1,2, ... , M , is

Binomial(p,M) , with a fixed number of trials, M , but with the success

probability, p , considered as a random quantity. The convenient natural

conjugate prior is the Beta(a,8) density:

(6.7) p(p I a,8) - B- (a,8)pc-lqB - I  (0 < p 1 - q < 1)

where B is the Beta function, B(a,8) = r(a)r(a)/r(a + 8) Henceforth,

*we abbreviate ax + 8 0 The hyperparameters (cx,a) can be selected by

estimating the first two moments of the detection probability, since E{p} -

1- E{q} - a/y , and V{p} - V{q} = E{p}E{q}(y + i)-

Because (6.7) is closed under sampling relative to the Binomial like-

lihood, if the outcome of this simplified experiment gives n = nS successes

(and hence M - nS  failures), then the posterior-to-data density of p is

again Beta, but with modified hyperparameters (a + n5 , 8 + M - nS) . The

posterior-to-data mean predictor of the detection probability is also in

credibility form:

(6.8) E{p I ns  -E{i I nS }  f ( ;M,).,

The hyperparameter ratio (a/y) determines the prior mean E{p} , but in

this case it is y -a + 8 which becomes the effective credibility time con-

stant. Naturally, there are M effective trials, with a natural estimator

from the data of p -1 - ns/M.

.. .. ... . ..... .......-... ... ... . . . ..... ... .
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6.2.2 Joint Detection Probability Prior and Posterior Densities

In our I-dimensional error detection model, it is natural to assume that,

a priori, the (pi) are independently distributed as in (6.7), but with pos-

I
sibly different hyperparameters, so that p(p I R,a) is R Beta(ai, i)

-- i-i

(With a slight increase in complexity, one could also start with Dirichlet-

distributed p.)

The appropriate part of the data likelihood (5.4), with X fixed, be-

comes:

I n -n(i)X (l-Q) il n(i) Tp69 P(D* R ) e im Pi ql

and we see that the first term prevents finding a simple natural conjugate

prior, and introduces a rather complex coupling between the (p i through

Q n qi However, if X were very small, so that nT were also small

and hence there would be no jointly found errors, then the first term would

be approximately unity, and the application of Bayes' law would update each

of the hyperparameter groups (ci,Bi) independently to (ai + n(i) , 8i +

nT - n(i)) in a manner similar to the last subsection, with the reasonable

interpretation that n(i) is the number of "successes" for inspector i

out of nT total "trials".

For the general case in which X is of arbitrary size, we expand e

in an infinite series, and find, after some algebra, the (normalized) posterior-

to-data joint density of the detection parameters as:

(6.10a) p(p D* AA) [k o ck cj iR Betai(a i+n(i) , +nT-n(i)+j)
0 J.0 i --i.. .... .

-:74
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with

j I r( i + nT  n(i) + j) r(y + nT)
(6. lo-. ( *.X

(6.lOb) cj = cj(V*,A) = I r(Bi + n- n(i)) r(yi + nT + j)

Beta. of course, refers to the usual one-dimensional Beta density for Pi1

Marginally, one can find:

(6.11) P(Pj D*, A) - [kO ck O cj Betapi(a+n(i) , i+nT-n(i)+J)

but this is misleading, as the (pi are now dependent random variables. In

general, then, the posterior parameter density is a data-weighted combination

of a sequence of simpler experiments, j f 0,1,2, in which inspector i

has n(i) "successes" out of nT + j "trials".

The predictive mean of pi can be expressed as a weighted sum of cred-

ibility forms similar to (6.8); for later use, we record the mean predictor

for the overall miss probability:

(6.12) E{Q i , = c] c. n f - (T ) n + ,
[J0 o

which has obvious credibility interpretations, in light of the above remarks

about "trials" and "successes".

6.2.3 Prediction of Undetected Errors

Since p(n A , p) is Poisson(XQ) one uses the same trick as above

to determine the marginal (prior) density of n

0- _ !
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nP

"o~ j r + no+ J) r(y)

(6.13) p(n 0  j J) (o I i + n + J)

By previous results, our prior opinion about the mean outcome must be

En o I } = A { 1 = A R (afl y i )

Surprisingly, the posterior-to-data predictive density of no is simpler

than (6.10) or (6.13), as there is a fortuitous cancellation of the term e X
-XQ

in (6.9) with the e of the Poisson density. After some algebra, we find:

nL

(6.14) p(no I D* , X) p(O ID*, X)() _ r(i +nT-n(i)) r(Yi+nT+no)

which can be put into recursive form, suitable for computation, as:

=~ f~ 1 - T + n ; n o  --

(6.15) P(n0 + 1 * , ) i +p(n0  n 2 ) =~ ~ T ) ~ +o T 0 i

(In practice, one sets p(O I 1* , X) to unity, computes successive prob-

abilities until they become negligible, and then renormalizes. Because of

the speed of this method, it appears best to compute the moments of n

00numerically, rather than using, say, E{n o 0 D* X } =XE{ D* ,X} and .-

(6.12).)

Note the reappearance of the mean credibility predictors for the (qi)

this time with n(i) "successes" out of nT + no  "trials" for inspector i

Because the f. approach unity as n - m , the density (6.15) will have a

Poisson tail, with parameter X

.............................................................,....°.."..°
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6.3 Random Occurrence Rates and Detection Probabilities

6.3.1 Joint Parameter Prior and Posterior Densities

With these preliminary formulae and interpretations over, we can move

quickly through the general case in which both X and the (Pi) are random

quantities. For simplicity, we combine the previous priors in an independent

I'

manner, so that p(X ; j a,b ; x,8) is Gamma(a,b) n Beta(ai,8i)
i=l

The full form of the likelihood (5.4) must now be used. We note that,

except for the term e , we would have independent updating of each com-

ponent of the prior according to:

(6.16) a'fa+nT ; b'-b+l ; ail=ai+n(i) ; ai=8i+ nT  (i)n T

But the coupling term can be expanded into a power series, as in previous

subsections, so the posterior-to-data joint parameter density becomes, after

normalization:

(6.17a) p( p V *) d- d(617) (~p V) k] dj Gamma (a' +J ,b') 11 Beta (al, a i  , )::

0k= k J=O am~ ~ i=l

with

I r( ) + j) r(yi)
(6.17b) d d (v*) (b)j! r(a' ) i r(8i) r( + j)j j r a') iffil .'.' +

In general, both X and the (pi) are correlated, a posteriori. Moments of

the parameters can now be obtained as in (6.12), provided one can compute the

coefficients (d (D*)) (see below).

:.. -. .. .. ... .:.... - -..... . ..-..... - - -, .-. . . . .......... ..... ..... .......... ",.-
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6.3.2 Prediction of Undetected Errors

Using (5.3), one finds the marginal density of no prior to inspecting

for errors, to be a rather complex combination of (6.5) and (6.13):

r(a+n0 ) -n I -o r(a+n +j) I i +n +J) r(y )
(6.18) p(no)= r(a)no! b j  a +n0 ~ ~ ~ 0 J !O r(a) i=l T ) T J

Of course, a priori E{n o } = E{XQ} = E{X}E{Q} = (a/b) R (Bi/y i) .

Again, we are surprised to find that the complexity of (6.17) and (6.18)

are not carried over into the predictive density of no , because of the

fortuitous cancellation of two exponential terms. After some algebra, we

find:

o(b- r(a' + no)\I r(al + no) rI(y' I )

(6.19) p(n 0  D*) p(O I D*) n r(a')" 1  r(8) r(y + n)

which should be compared with (6.14) and the updated version of (6.5). In

fact, from (6.17), we see that:

d (D*)
n

p(n°  D*) 0*

J1 dj(*
j -0

which gives a logical interpretation to the weights in that formula. Simi-

larly, E{no I D*} could also be expressed as the ratio of two weighted sums

of products of linear credibility formulae.

As in (6.15), the predictive density can be put into recurrence form as:

.. . . . . . . . . . . . .... . . . . . . -- . ..

. ."- -.-.. :-' -".. . . .
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p(n +1 D *) 1\al+n0  I C~
(6.20) b'0 V) =i~I~~n

=(~~-#,--~ i- n(iiT~ ;)nnn;i
00

Numerical computation is very efficient; by setting p(O D *) -1 ,one in

fact computes the coefficients d (V*) ,and then gets the predictive den-.
n

0

sity through normalization. Moments of n0 are thus best found numerically.

As no- f - 1 for every i ,so that p(n0  D*) has a Negative

*Binomial a + n.T (b + 1) l) tail, similar to the predictive density with p

fixed in Subsection 6.1.3.

of course, the various special results of Subsections 6.1 and 6.2 can

now be gotten from the formulae above through appropriate limiting values of

the hyperparameters.

0.
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7. THE POSTERIOR MODE

Although (6.20) permits the calculation of any moment of n , it is ..0..0

difficult to compare these Bayesian results with the classical point esti-

mators of Section 3.

However, the mode of the predictive density is easily found as the 0

smallest integer, n, for which p(n + 1 D*) < p(n° I D*) . From (6.20),
0 ~ 00

after some rearranging, we find that n0  is the smallest integer not less

than the solution n* to: ..
0

(7.1) n* +1= n* + nT + (b )E6 - n* - nT n) + +i /
0 0 T + 1 0 T~j n*+ nT +y

which should be compared with (3.2), rewritten with no - N - nT
0T

(7.2) = 1 + I -' 'no 1 n + nT

whence we can easily see the effect of adding prior opinion.

If b - 0 and y 0 , with constant prior means E{6} and E{pl

n* approaches n , so that this would correspond to "diffuse" prior know-0 0

ledge (although, for the Beta density, a I - 1 and y - 2 is usually

considered the diffuse case). Conversely, as b - , with constant E{ ) , "..

the mode approaches the integer above the solution to:

(7.3) n* + 1 E {} II f 1 - ni) ; n* + nT y
0 1-1 n+nT/

or, if all the y* , with E{pl fixed, the mode is the integer above

the solution to:

-3--

.... . . . . . .. .o.. . . ."
ill .. ll ll .. l~ I I . li l . IIl l ll III ! .-- I - ii i 1 !
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(7.4) n* + 1. = ( T

which is practically the posterior mean (6.6). Thus,the posterior-to-data

mode of the predictive density is intimately related to, and a natural

generalization of, the Petersen-Chapman-Darroch estimators.

IL. . . . . .. . . . . S
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8. OTHER MODELS

A variety of related error-detection models can be developed using the S

above methods. For example, in animal census studies, it is often assumed

that the capture probability remains constant at each trial; this is the

same as assuming that the individual detection probabilities (pi) are equal

to some co on unknown value, p . For this case, one can easily show that

the two statistics, V** - 1 , n - n(i) , are sufficient, giving

estimators:

(8.1) Nn,.T+Njl- ; q-l--n ; Qq
' N N

If we assume a Beta(,) prior for p , X remaining Gamma(a,b) a priori,

we find that, corresponding to (6.20), the predictive density for undetected

errors satisfies the recursion:

p(n + V**) ( n. +no I1 (8 + I(nT- + no) + J)"p(no j V**) b + I J +InT+no

The convergence of the estimate Q with increasing I is quite rapid be-

cause of the increased rate of learning about p in this model.

A related variation occurs when the inspectors have a common "unit"

detection probability, but expend different known amounts of effort or search

duration (ei) ; this is tantamount to assuming P peiP  (i 1,2, 1)

One can also assume that the error detection or correction process is

defective, or that new errors can enter randomly during inspection; this leads

to likelihoods related to those already analyzed for non-closed animal popula-

tion studies (Seber (1982)). Or, one can assume that detection probabilities

are different for different error types (Otis et al., (1978)). And so forth.

. ... . . . . . . .
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Finally, one could also make a Bayesian analysis of the serial inspec-

tion strategy; however, as explained earlier, we expect this to be less ef-

ficient at predicting unfound errors because less information about the

unknown detection probabilities is generated. A comparison between these

two approaches will be the subject of a forthcoming paper.

*j I
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9. OTHER BAYESIAN MODELS

Apart from an elementary model for I - 2 by Gaskell and George (1972), 9

a partly Bayesian approach by Carle and Strub (1978), a sequential sampling

plan for I - 1 by Yang et al., (1982), and a sequential sampling plan for

I - 2 by Freeman (1973), the only general Bayesian model of which the author

is aware is by Casteldine (1981). Starting with the likelihood (3.2), he

assumes:

either that I: all pi p ,which is Beta(,8) ,a,

or that II: each i.i.d. is Beta(a,6)

and that N has an arbitrary independent prior, R(N) . From this point on,

his argument is mostly numerical or approximative in nature, concentrating on

11(N) constant or 11(N) N Some other more complex variations are also

explored, for example, a two-stage model in which (ln w ) is Normal(6,a 2)

2o known, and 8 is also normally distributed with known hyperparameters.

However, additional approximations appear necessary to interpret these varia-

tions.

This is in contrast to our results, which require N Poisson(X) and

Gamma(a,b) , which is tantamount to assuming N is Negative Binomial, a

priori. While this assumption may be of limited validity in animal popula-

tion studies, it seems like a useful starting point for reliability modelling,

at least until empirical error and defects distributions are available (Yang

et al., (1982) argue a Gamma-Poisson assumption in proofreading manuscripts).

Our predictive densities also have the advantage that they can be expressed

in closed form, with "credibility" interpretations for many of the components,

and the posterior mode can be related to the classical Petersen-Chapman-Darroch

formula.

Other Bayesian variations will, no doubt, also prove useful in application.
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10. NUMERICAL BEHAVIOR OF THE BAYESIAN ESTIMATOR

To obtain some idea of the numerical properties of (6.19), simulations

were run using various priors, and various values of I

For the detection probabilities, it was assumed that for the Beta priors,

- 1 - 1.0 , which gives uniform densities for all i . Three cases of

error rate prior were examined:

E{i) V{I

I 50 1250

Ii 100 5000

111 200 20000

The shape parameter a of the Gama prior was kept constant at a = 2 , with

b adjusted to give the above moments. Since N was 100, it can be
true

seen that these correspond to low, O.K., and high prior estimates, though of

course N - 100 could have occurred from any prior.

Then, one sample of data was obtained for I - 1,2,4, and 8, with as-

sumed values Pi -0.5 for all i The data sets obtained were:

I - 1 nT -
4 5  n- (45)

S-2 n m 7 9  n - (55,47)

I - 4 nT - 95 n- (48,52,57,45)

I - 8 nT - 99 n - (50,55,42,47,50,44,51,50)

Of course, the results would have been quite different in another simulation.

The classical estimator, N , does not exist for I - 1 ; but would have

* given values of 112.39, 101.31, and 99.45, that is, no - 33.39, 6.31, and

0.45 for I - 2,4,8 respectively.

Figure 4 shows the density p(n°  D 0) for I - 1 , for the three priors

" given above; the effect of the priors on the predictive mean, though not on
e'5.

. - .. • • *. " . . *.° , .. .. ** "... . -. . . .. .- . . . . . ."
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the shape can be clearly seen. Figure 5 shows that the predictive density

gdevelops an interior mode when 1-2, although the difference due to dif-

ferent priors is less perceptible. For 1 4 and 8, the effect of the

priors is barely perceptible, so that Figure 6 shows just case II above; for

1-8, the mode is again at n -o0

i

% ..%.... .. . .
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TRUE Fun-l
no (Eflo V*]

1 4

p(n '*) PRIOR II

0 5 10 15 20 n o

95 100 105 110 115 n + nT

E_°] - 0 .39

- 0 no - 0.47

TRUE n - 1

1 8

p(n0  PRIOR I

0 5 10 no
99 104 109 no+ n

FIGURE 6. Predictive Densities for one sample from four and eight
observers, respectively, using prior density II.

... ... .,. .
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